PROJEKTI / lzdelava mobilnega robota z razvojnim sistemom roboPIC III:III

Izdelava mobilnega robota z razvojnim si-

stemom roboPIC (4)

Avtor: Silvan Bucik
E-posta: silvan.bucik@tscng.net

Do sedaj smo se naucili prizigati led diodo, utripati z ledico ter uporabljati tipko. Opazili smo, da so prvi
Clanki o razvofnem sistemu roboPIC v vas sproZili veliko zanimanje, saj ste se hitro odzvali. Da bi bilo nase
sodelovanje ¢im boljse, bi ob tej priloZnosti bralce povabil na spletne strani foruma (http.//www.svet-el.si/
phpBB2/index.php), kjer lahko predstavite svoje uspehe pri delu, s skupnimi mocmi pa lahko resimo mar-

sikatero nastalo tezavo.

Kaj bomo spoznali v tem prispevku? Posvetili bi se podrobno-
stim programskega jezika C, kajti premnogokrat se nam dogaja,
da nam pri realizaciji lastnih idej primanjkuje poznavanje orodij.
Spoznali bomo tipe spremenljivk ter njihovo rabo, vrste matema-
ticnih in logiénih operatorjev jezika C ter ukaze za nadzor toka
programa. Prepri¢ani smo, da vam bo gradivo zelo koristilo.

Resitve »domacih nalog«

Sedaj pa k nalogam. Pogledali si bomo resitve »domacih nalogx,
resitve nagradnih nalog pa prepustimo za prihodnjo stevilko.
Naloga 1: Spremenite program tako, da bo led dioda na prikljuc-
ku RB3 svetila, ko bo tipka RAO nepritisnjena. Ob pritisku nanjo
pa naj led dioda ugasne.

[/ INICIALIZACIJA
void main (void)

{

TRISA = 0B11111111;
ADCONI = 0x07;

//PORTA = vhod, tudi prikljucek RAO
//PORTA definiramo kot digitalna
vhodno-izhodna vrata

TRISB = 0B11110111; [1¥*** prikljuCek RB3 definiramo kot
izhod

TRISC = 0B11111111; //PORTC = vhod, ga ne uporabljamo

TRISD = 0B11111111; //PORTD = vhod, ga ne uporabljamo

TRISE = 0B00000111; //PORTE = vhod, ga ne uporabljamo

/] GLAVNI PROGRAM

do
//uporabimo neskoncno do-while zanko

{

if (RAO !=0) [/**** ko tipka ni pritisnjena, je
Togic¢no stanje razlicno od 0

{

RB3 = 0; //Ce je tipka nepritisnjena, led dioda
sveti

}

else [/**** ko je tipka pritisnjena, je
Togi¢no stanje enako 0

{

RB3 = 1; //Ce je tipka pritisnjena, Ted dioda

ugasne

while (1>0); //pogledamo Se enkrat, Ce ni sedaj kaj

drugace

ELEKTRONIKE

Naloga 2: Spremenite program tako, da bo ob pritisku tipke RA4
gorela led dioda na izhodu RB5. Ob spustu tipke pa naj zasveti
led dioda na izhodu RB3.

[/ INICIALIZACIJA
vois main (void)

{

TRISA = 0B11111111;
ADCONI = 0x07;

//PORTA = vhod, tudi prikljucek RA4
//PORTA definiramo kot digitalna
vhodno-izhodna vrata

TRISB = 0B11010111; [/**** prikljucka RB3 in RB5 doloc¢imo
kot izhoda

TRISC = 0B11111111; //PORTC = vhod, ga ne uporabljamo

TRISD = 0B11111111; //PORTD = vhod, ga ne uporabljamo

TRISE = 0B00000111; //PORTE = vhod, ga ne uporabljamo

/] GLAVNT PROGRAM
while (1>0)
{

//uporabimo neskoncno while zanko

if (RAA == 0) //ko je tipka pritisnjena, je Togicno
stanje enako 0

{

RB5 = 0; //Ce je tipka pritisnjena, led dioda
na prikljucku

RB3 =1 //RB5 sveti, na prikljucku RB3 pa ne

}

else [1¥*** ko tipka ni pritisnjena, je
logicno stanje enako 1

{

RB3 = 0 //Ce tipka ni pritisnjena, led dioda
na prikljucku

RB5 = 1; //RB3 sveti, na prikljucku RB5 pa ne

Naloga 3: Spremenite program tako, da bo led dioda utripala
hitreje (na primer 10 Hz), ali po¢asneje (na primer 2 Hz).

// INICIALIZACIJA

int frg=frekvenca_kHz;
void main (void)

{

TRISA = 0B11111111;
ADCON1 = 0x07;
vhodno-izhodna vrata

//IME GLAVNE FUNKCIJE

//PORTA definiramo kot vhod
//PORTA definiramo kot digitalna

OKTOBER 2005

TRISB = 0B11111110; [/**** RBO doloCimo kot izhod, vsi
ostali prikljucki so vhodi

TRISC = 0B11111111; //PORTC definiramo kot vhod

TRISD = OB11111111; //PORTD definiramo kot vhod

TRISE = 0B00000111 //PORTE definiramo kot vhod

// GLAVNT PROGRAM

while (1>0)

{

RBO = 0; //na izhodu RBO se pojavi napetost 0OV

(Togicna 0) - dioda se priZge

//**** pocakamo pol periode

//**** pri 10 Hz znaSa parameter 50,

[/**** pri 2 Hz znaSa parameter 250

//na izhodu RBO se pojavi napetost +5V

(Togicna 1) - dioda ugasne

//**** pocakamo pol periode

pri 10 Hz znaSa parameter 50,

pri 2 Hz znaSa parameter 250

} /] vse skupaj ponavljamo (while
zanka), da pricne led dioda utripati

wait_mili(50);

RBO = 1;

wait_mili(50);

//****

//****

Naloga 4: Napisite program, da bodo utripale vse led diode na
vratih PORTB.

/] INICIALIZACIJA

int frg=frekvenca_kHz;
void main (void)

{

TRISA = 0BI1111111;
ADCONT = 0x07;

//IME GLAVNE FUNKCIJE

//PORTA definiramo kot vhod
//PORTA definiramo kot digitalna
vhodno-izhodna vrata

TRISB = 0B00000000; [1¥*** yse prikljucke vrat PORTB
doloCimo kot izhode

TRISC = 0B11111111; //PORTC definiramo kot vhod

TRISD = 0B11111111; //PORTD definiramo kot vhod

TRISE = 0B00000111 //PORTE definiramo kot vhod

/] GLAVNT PROGRAM

while (1>0)

{

PORTB = 0B00000000; [/**** prizgemo vse led diode na
vratih PORTB

//pocakamo pol periode

//**** ygasnemo vse led diode na
vratih PORTB

wait_mili(100); //5e enkrat poCakamo pol periode

} //vse skupaj ponavljamo (while zanka),

da pricne led dioda utripati

wait_mili(100);
PORTB = 0B11111111;

Spremenljivke v programskem jeziku C
Osnovni podatkovni objekti, nad katerimi se izvajajo operacije,
so spremenljivke in konstante. Bistvena razlika med spremenljiv-
ko in konstanto je, kot Ze njuni imeni povesta, da se vrednost
spremenljivke med tekom programa lahko ves ¢as spreminja, kon-
stanta pa v celotnem programu zavzema isto vrednost in je ni
mogodce spreminjati.

V zagetku pisanja programa je potrebno vse spremenljivke de-
klarirati. Konstante, ki v programu pogosto nastopajo, pa je smi-
selno nadomestiti s prireditvenimi imeni.

OKTOBER 2005

n PROJEKTI / lzdelava mobilnega robota z razvojnim sistemom roboPIC

V programskem jeziku C lo¢imo stiri tipe osnovnih spremenljivk.

To so:

* bitne spremenljivke (1-bitne spremenljivke),

* znaki (8-bitna Stevila),

* nepredznadena cela Stevila (8-bitna, 16-bitna, 32-bitna Stevi-
la),

* predznacena cela Stevila (8-bitna, 16-bitna, 32-bitna Stevila),

* Stevila s plavajoco vejico (32-bitna, 64-bitna, 80-bitna stevila).

Natancen obseg posameznih tipov prikazuje sledeca tabela:

spremtell:lljivke T;:;:T Shseg Veaduosi
kit 1 Oalil
char 8 -128 do 127
unsigned char 8 0do 255
int 16 -32,768 do +32,767
unsigned int 16 0 do 65535
long 32 -2,147,483,648 do +2,147,483,647
unsigned long 32 0 do 4,294,967,295
float 32 3.4*10 do 3.4%10™*
double 64 1.7¥10°" do 1.7%10"
long double 80 3.4%107% do 3.4*%10™*

Tabela 1: Tipi spremenljivk in njihov obseg

Deklaracija spremenljivk
Pred uporabo je potrebno vsako spremenljivko posebej deklari-
rati. S tem smo dologili njen znaéaj in namen uporabe. V¢asih z
deklaracijo dolo¢imo tudi zacetno vrednost spremenljivke, ki pa
se v toku izvajanja programa spreminja.
Primeri deklaracij spremenljivk:
char znak_0="a’; //spremenljivka znak 0 dobi zacetno
vrednost a
int stevilo_ 0, stevilo_1=764;

//16-bitna spremenljivka stevilo_0
nima zaCetne vrednosti, 16-bitna
spremenljivka stevilo_l ima zaCetno
vrednost 764

char stevilo_2= 0B01010011, stevilo_3=0x3A;
char stevilo_4 @0x50; //16-bitna spremenljivka stevilo_4 ima
doToCen stati¢ni naslov (fiksni) 0x50

Vse spremenljivke razen stevilo_0 imajo z deklaracijo dolo¢ene
tudi zacetne vrednosti. Opazimo, da so spremenljivke znak_0O,
stevilo_2, stevilo_3 in stevilo_4 tipa char, Ceprav je le znak_0O
zares znakovnega tipa. Prevajalnik namre¢ ne lo&i posebnih raz-
lik med spremenljivko znakovnega tipa in 8-bitno spremenljivko.
Prevajalnik bo vsem spremenljivkam spominske lokacije dodelil
samodejno (poiskal bo prvo prosto mesto). Le spremenljivka ste-
vilo_4 ima statiéno spominsko lokacijo (0x50); naslov spremen-
ljivke smo sami dologili.

Zapisovanje konstant
V programskem jeziku C lo¢imo veé& nacinov zapisovanja &tevil in
znakov:

ELEKTRONIKE

PROJEKTI / lzdelava mobilnega robota z razvojnim sistemom roboPIC n

764

desetiski zapis stevila (Stevilo se ne sme zaceti z 0),
0b01010011

dvojiski zapis Stevila (Stevilo se priéne z znakoma Ob),
0x34

Sestnajstiski zapis Stevila (Stevilo se priéne z znakoma 0x),
0256

osmiski zapis $tevila (Stevilo se pri¢ne s ¢rko 0),
1.8e-3

zapis $tevila s plavajoco vejico,

a
zapis konstante znakovnega tipa.

Polja

Ve spremenljivk, ki ustrezajo skupnemu opisu, lahko zdruzimo v
skupino spremenljivk, ki jo imenujemo polje. Vsaka spremenljiv-
ka v polju zavzema svoje mesto in jo tako tudi obravnavamo. Pri
uporabi spremenljivk v polju moramo nujno poleg imena spre-
menljivke navesti tudi pripadajoci indeks.

Primer deklaracije polja:
char senzor[37; //polje s tremi elementi, elementi so
8-bitna Stevila
char senzor[3]= {0b11100010, 0b11001100, 0b11011100};
//polje s tremi elementi z definirani
mi zacetnimi vrednostmi, elementi so
8-bitna Stevila

Gornja zapisa se razlikujeta v tem, da v drugem primeru istoc¢a-
sno z deklariranjem polja dolo¢amo tudi zacetne vrednosti ele-
mentov, medtem ko v prvem primeru zadetne vrednosti elemen-
tov niso dolocene. Zapis prikazuje primer polja senzor, ki vsebu-
je podatke o stanjih senzorjev preteklih treh merjenj. S klicanjem
polja senzor imamo dostop do kateregakoli podatka zadnjih treh
merjen;.

Primer uporabe:

senzor[2] = senzor[1]; //stare meritve se shranijo na visjo
lokacijo ter pripravimo

senzor[1] = senzor[0]; //na lokaciji senzor[0] prostor za
novo meritev

senzor[0] = PORTA; // stanje na senzorjih, ki so priklju
Ceni na vrata PORTA, se prenese v
polje senzor na lokacijo 0; to so
sveZi podatki

Strukture

Strukture so v osnovi zelo podobne poljem, vendar jih za razliko
od slednjih lahko sestavljajo elementi razli¢nih tipov. Elementi
struktur so samostojni elementi, razliénih tipov in dolzin in sku-
paj tvorijo celoto.

Primer deklaracije strukture:
struct{
unsigned STOP:1; //v strukturi control definiramo
spremenljivko STOP, ki zavzema 1 bit
//v strukturi control definiramo
spremenljivko NAPREJ,ki zavzema 1 bit
//v strukturi control definiramo
spremenljivko LEVO, ki zavzema 1 bit
//v strukturi control definiramo

unsigned NAPREJ:1;

unsigned LEVO:1;

unsigned DESNO:1;

ELEKTRONIKE

spremenljivko DESNO,ki zavzema 1 bit
//v strukturi control definiramo
spremenljivko PODATEK,ki zavzema 4 bite
//na koncu napiSemo ime strukture

unsigned PODATEK:4;
fcontrol;

Primer uporabe:
if (control.STOP==1) //Ce je v registru control postavljen
bit stop,

//potem naj se motorja ustavita

prikljucena sta preko vrat PORTC)

PORTC&= 0b11000110;

Kazalci

Kazalec je spremenljivka, ki vsebuje naslov neke druge spremen-
liivke. S kazalcem, katerega vsebina je naslov spremenljivke, iz-
vajamo operacije nad spremenljivkami na posredni nacin. V pre-
nekaterih primerih je uporaba kazalcev nepogresljivo orodje. Ven-
dar je za zacetnika tovrstni nadin programiranja kar hud zalogaj,
zato se bomo v zadetnih korakih kazalcem izognili.

Primer deklaracije kazalca:
char *kazalec; //kazalec na 8-bitno Stevilo (kazalec
prepoznamo po prefiksu *)

Pred praktiénim primerom bi omenili e dva znaka, ki spremljata

delo s kazalci:

* prefiks pomeni vrednost spremenljivke na naslovu, na katere-

ga kaze kazalec,

& prefiks pomeni naslov spremenljivke, na katerega kaze kaza-
lec.

Primer uporabe kazalcev pri prepisu vsebine vrat PORTB

na PORTC:
kazalec = &PORTB; //v kazalec se shrani naslov vrat
PORTB (0x0006)

//v temp se shrani vrednost spremen
1jivke, katere naslov (0x0006,
naslov vrat PORTB) hrani kazalec

//vrednost kazalca se poveCa za 1
(sedaj znaSa 0x0007)

//na naslov, kamor kaZe kazalec
(0x0007, naslov vrat PORTC), se
prepiSe vrednost iz spremenljivke
temp

temp = *kazalec;

kazalec = kazalectl;

*kazalec= temp;

Operatorji v programskem jeziku C
Poglejmo si, katere operacije uporabljamo pri programiranju s
programskim jezikom C.

operacija: | primer: opis: pomen:
_ Al priredi Sp]'cmc]ﬂ_i!'l\-'ki a vrednost
spremenljivke b
[] li] a[2] izbor elementa v polju
. a.b register.bit izbor elementa v strukturi
.. *n a=*p vrednost spremenljivke na naslovu
& &a p= &a vrednost naslova spremenljivke
char a.b; char a; char b; nastevanje
a=h; znak ; oznacuje konec stavka

Ostali operatorji

OKTOBER 2005

Sodelujte v nagradnem zZrebanju
Microchipove PICDEM.net™ Lite
Internet/Ethernet demo plosce

www.microchip-comp.com/se-picdem

Svet elektronike svojim bralcem nudi moZnost osvoyjitve Microchijp PICDEM.net Lite demo plosce in MPLAB

ICD 2 razhroscevalnika.

PICDEM.net Lite demo ploséa je pravzaprav Internet/Ethernet raz-
vojna plosca z vgrajenim PIC18F452 mikrokontrolerjem in tovarni-
$ko vgrajenim TCP/IP skladom. Plos¢a podpira vsa 40-pinska DIP
vezja s standardnim razporedom pinov, kakrénega imata PIC16F877
ali PIC18F452.

PICDEM.net plo-

§€a je namenjena

eksperimentiranju

z razliénimi Micro-

chipovimi TCP/IP

reSitvami. Upora-

bniku je po inicial-

ni nastavitvi IP na-

slova omogocen

takoj$nji dostop

omrezju. Flash mi-

krokontroler omo-

goda modifikacije

v demo programu :

oziroma dodajanje J 355
aplikacijskega pro- N

grama.

Na demo plos¢i se

nahaja tudi stabili-

ziranih 5V za napa-

janje dodatnih sen-

zorjev ali testnih

uporabniskih vezij.

Z namenom razvo-

C18 in HI-TECH PICC 18 in je predviden le za delovanje v Micro-
chipovi PIC 18 druzini mikrokontrolerjev.

Ceprav je ta implementacija namenjena le za delovanje na PIC-
DEM.net Internet/Ethernet demo plos¢i, jo lahko enostavno prila-
godimo tudi za de-
lovanje v katerikoli
napravi, ki je
opremljena s
PIC18 mikrokon-
trolerjem. PIC-
DEM.net vsebuje
Ethernet in RS-
232 komunikacij-
ski vmesnik.
HTML spletne
strani, ki jih gene-
rira PICmicro®
mikrokontroler, si
lahko ogledujemo
s katerimkoli stan-
dardnim spletnim
brskalnikom (npr.
Microsoft®
Explorer). Zagetna
konfiguracija plo-
8¢e (nastavitev IP
naslova) se izvaja
preko RS-232 vrat
s pomodjo stan-

ja lastne aplikacije

lahko v ¢Cip nalozi-

mo tudi druge standardne ali uporabniske strezniSke programe.
Na plosci je uporabljen brezplacen Microchipov TCP/IP sklad, ki je
opisan v referen¢ni aplikaciji AN833 (DS00833). V omenjenem do-
kumentu so na voljo tudi primeri kode.

Microchip TCP/IP sklad je garnitura programov, ki omogoca upora-
bo tako standardnih TCP/IP aplikacij (HTTP Server, Mail Client,
itn.), kot tudi uporabnigkih TCP/IP aplikacij. Da bi lahko uporabili
TCP/IP sklad, se uporabnikom ni potrebno uciti vseh njegovih za-
pletenih specifikacij in svoj trud lahko osredotodijo le na HTTP strez-
nisko aplikacijo, ki pa ne zahteva poznavanje TCP/IP protokola.
TCP/IP sklad je implemetiran na modularen nacin, z vsemi svojimi
zmoznostmi kreiranja visoko abstraktnih plasti, ki jim lahko dostopa-
mo iz katerekoli plasti neposredno pod njimi. Sklad je napisan v
programskem jeziku C, namenjen je Microchipovim prevajalnikom

‘ dardnega termi-

nalskega progra-
ma. Demo plo$¢a je opremljena tudi s 6-pinskim modularnim konek-
torjem za direktno povezavo z MPLAB® ICD 2 razhro$cevalnikom.
S pomoc¢jo MPLAB® ICD 2 lahko uporabniki spreminjajo oz. pre-
programirajo flash PICmicro mikrokontroler in tako prilagajajo delo-
vanje sistema svojim potrebam. Na plosdi je tudi veliko prostora za
dodajanje raznih dodatnih komponent potrebnih za izvedbo lastnih
aplikacij. Povr§ina zadostuje za namestitev vgradnega modema, ki
bo zagotavljal klicno zmogljivost. Na voljo je tudi ve¢ statusnih indi-
katorjev in uporabniskih vmesnikov, vkljuéno s 16 x 2 LCD prikazo-
valnikom in LEDikami.

Da bi sodelovali v nagradnem zrebanju tega raz-
vojnega kita, je dovolj, da se prijavite na www.mic-
rochip-comp.com/se-picdem.

PROJEKTI / lzdelava mobilnega robota z razvojnim sistemom roboPIC n

operacija: | primer: opis: pomen:
ok atb sestevanje dveh Stevil
- a-b odstevanje dveh Stevil
b a*b mnozenje dveh Stevil
/ a/b deljenje dveh Stevil
i n ostanek po celodtevilskem
a 4260 deljenju (modulo)
) (at+b)*c matemati¢ni oklepaj
poveca vrednost
++ ++a a=atl spremenljivke za 1 in jo nato
uporabi (predinkrement)
uporabi spremenljivko in jo
T+ at++ a=atl nato poveca za |
(postinkrement)
zmanj$a vrednost
-- --a a=a-1 spremenljivke za 1 in jo nato
uporabi (preddekrement)
uporabi spremenljivko in jo
-- a-- a=a-1 nato zmanjsa za |
(postdekrement)
_ negativna vrednost (predznak
- -a a=-a g
minus)
- 4y — setevanje d}’ch_ Stevil in
prirejanje
= - = odstevanje dveh Stevil in
= a-=b a=a-b e o 4
prirejanje
i ek 3 mnoZenje d\l*eh_ stevil in
prirejanje
= N AT deljenje .dvlch :stcwl in
prirejanje
0= a%=b a= a%b modulo _dvgh $lev11 in
prirejanje
Aritmeticni operatorji:
operacija: | primer: opis: pomen:
& a&b bitna in operacija
| alb bitna ali operacija
A a*b bitna izkljuéna ali operacija
bitna ne operacija nad
~ ~a spremenljivko (eniski
komplement)
| \RBO bitna ne opelraci_ia nad
posameznim bitom
logicni pomik v levo (pomakne
<< a<<b vrednost spremenljivke a za b
bitov v levo)
logi¢ni pomik v desno
(pomakne vrednost
>> a>>h Rt :
spremenljivke a za b bitov v
desno)
&= a&=b a=a&b bitni in in prirejanje
|= al=b a=alb bitni ali in prirejanje
f= a*=b a=a"b bitni izkljuéni ali in prirejanje
= a<<=b | a=a<<b pomik levo in prirejanje
>>= a>>=b | a=a>>b pomik desno in prirejanje

Logicni operatorji:

Kontrola poteka programa

Stavki za kontrolo toka programa v programskem jeziku dolo¢ajo
vrstni red izvajanja programa. V programskem jeziku C lo¢imo
dve vrsti stavkov:

ELEKTRONIKE

operacija: | primer: opis: pomen:
< a<b manjie kot
> a=b vedje kot
pogojni operator (Ce je izraz v
sicer pa je enak spremenljivki r2)

= &= enako kot

I= al=b razli¢no od

= a==b vedje ali enako kot

<= a<=b manje ali enako kot
Se&e ()&&() | (a=0)&&(b=3) logiéni test in

Il Moy (a=0)[|(b=3) logi¢ni test ali

Relacijski operatorji:

* logi¢ne odlogitve in
* programske zanke.

Logicne odlocitve
K'logi¢nim odlogitvam Stejemo tiste stavke, ki poskrbijo za vejitev
programa. V to skupino spadajo:

* stavek if-else,
* stavek switch-case in
* programski skok goto.

Stavek if-else ter programski skok goto sta bila opisana Ze v pre-
tekli &tevilki, zato ju ne bi ponovno opisovali.

Stavek switch-case

Poglejmo si uporabo switch-case stavka. Stavek switch-case upo-
rabljamo v primerih, ko se program lahko nadaljuje po veé razli¢-
nih poteh. Na nek nacin je stavek switch-case nadgradnja stavka
if-else, pri slednjem se program lahko nadaljuje le po dveh razli¢-
nih poteh. Pot, po kateri se bo program nadaljeval, je odvisen od
izpolnjevanja pogojev (case).

Sintaksa:
switch(a)
{
case 0: akcija_0; //Ce je a enak 0, se izvede del
programa akcija_0

//izhod 1z zanke

//Ce je a enak 1, se izvede del
programa akcija_l

//izhod iz zanke

//Ce je a enak 2, se izvede del
programa akcija_2

break;
case 1: akcija_l;

break;
case 2: akcija_2;

break; //izhod 1z zanke

default: akcija_drugo; //v ostalih primerih se izvede del
programa akcija_drugo

break; //izhod iz zanke

J

Primer uporabe:
switch (senzor_stat)
{
case 0B00000000:
mot2a=1;

// testiranje pogojev

// del programa, ki se izvede v

OKTOBER 2005

IIIIlII PROJEKTI / lzdelava mobilnega

primeru,

mot2b=0; // ko je vrednost

motla=0; /] spremenljivke senzor_stat
mot1b=1; /1 enaka 0b00000000

break;

case 0B00000001:

motZa=1; // del programa, ki se izvede v
primeru,
mot2b=0; // ko je vrednost

motla=l; //
mot1b=0; //
break;

spremenljivke senzor_stat
enaka 0000000001

case 0B00000100:

mot2a=0; /1 del programa, ki se izvede v
primeru,

mot2b=1; // ko je vrednost

motla=1; // spremenljivke senzor_stat
mot1b=0; // enaka 0000000100

break;

default:

mot2a=1; // del programa,

mot2b=0; /] ki se izvede

motla=0; // v ostalih

mot1lb=1; /] primerih

break;

}

Programske zanke

Programske zanke so deli programa, ki se veékrat ponovijo. Ste-
vilo ponovitev je odvisno od izpolnjevanja pogojeyv, ki se pred vsako
ponovitvijo zanke preverjajo. V to druzino stavkov spadajo:

* programska zanka while,

* programska zanka do-while,

* programska zanka for ter

* stavka break in continue.

Zanki while ter do-while sta nam Ze znani iz pretekle tevilke, ogle-
dali si bomo Se preostali dve.

Programska zanka for

Programska zanka for je nadgradnja zanke while. Za razliko od
zanke while, ki je od parametrov potrebovala le pogoj testiranja,
potrebuje zanka for tri zaGetne parametre, ki so med seboj loge-
ni s podpidji, in sicer:

e zacetno vrednost,

* pogoj testiranja in

* korak zanke (reinicializacija).

Sintaksa:
for (zaCetna_vrednost, pogoj_testiranja, korak_zanke)
{
akcija_l;
}

Pred pricetkom izvajanja zanke se nastavijo zadetne vrednosti
spremenljivk, nato se izvede zanka. Ob zaklju¢ku zanke se izve-
de Se operacija korak zanke. Zanka se izvaja tako dolgo, dokler
je pogoj izpolnjen. Preverjanje se vr§i vedno v zacetku zanke,

OKTOBER 2005

robota z

razvojnim sistemom roboPIC

Sele nato se izvede akcija_1.

Primer uporabe:
for (st_ponovitev=0;st_ponovitev<3;st_ponovitev=st_ponovi-
tevtl) //zacetna vrednost spremenljivke
//st_ponovitev je enaka 0
{ //tu se izvede preverjanje, Ce je
st_ponovitev<3

servo2_out(b1); /lizvaja
//se
wait_sec(5); //sledeci
servo2_out(77); /1del
//programa
wait_sec(5); //vse
servo2_out(102); //do
//tukaj
wait_sec(5); //oziroma do tukaj
} //ob zakljucku zanke se spremenljivka

//st_ponovitev poveca za 1

Z uporabo programske zanke while bi isti program izgledal tako-
le:
st_ponovitev=0; //pred pricetkom izvajanja zanke

//nastavimo zaCetno vrednost
while(st_ponovitev<3) //testiranje pogojev
{
servo2_out(51);

wait_sec(5);
servo2_out(77);
wait_sec(5);
servoZ_out(102);
wait_sec(5);
st_ponovitev=st_ponovitev+l

//korak zanke

}

Stavka break in continue

Stavka break in continue uporabljamo za prekinitev ali nadaljeva-
nje programske zanke. S stavkom break prekinemo izvajanje ka-
terekoli zanke, kljub temu, da so pogoji izvajanja zanke izpolnje-
ni. S stavkom continue pa doseZzemo ravno nasprotno: program-
ska zanka se bo vedno ponovila, ne glede na to, ali so pogoji
izvajanja zanke izpolnjeni ali ne.

Sintaksi:
break; /] prekine izvajanje zanke
continue; // nadaljuje izvajanje zanke

Primer uporabe:
for (stevec=0;stevec<5;stevectt)
{
if(stevec==2)
{
continue; //v primeru, da je spremenljivka
stevec enaka 2

//(Cetudi je vrednost spremenljivke
stevec manjsa kot 5),

//se izvajanje zanke ustavi in

//vrne na zaCetek for zanke
PORTB<<=1;

ELEKTRONIKE

PROJEKTI / lzdelava mobilnega

if(stevec==4)
{

break;

}

//k1jub temu, da je pogoj izpolnjen
//(vrednost stevec manjSa kot 5),

//se izvajanje zanke predcasno prekine
//in nadaljuje izven for zanke

Zbirniski ukazi

Pa Se to. V&asih se pojavi zahteva, da moramo del programa na-
pisati v zbirnem jeziku. To je nizji programski jezik, ki ga uporab-
ljamo pri programiranju mikrokontrolerjev. Po naravi je primitiv-
nejsi, to pomeni, da je potrebno opravila, ki jih v vi§jih program-
skih jezikih zapi§emo v eni vrstici (primer matemati¢ne operacije
mnoZenja), v zbirniku zapiSejo v veé korakih. Prednost zbirnika
pred vi§jimi programskimi jeziki je predvsem v kraj8i programski
kodi in posledi¢no hitrejSem izvajanju programa.

Sintaksa 1:

fasm /loznacuje pricetek zbirniske kode
programska koda
ffendasm /loznatuje konec zbirnidke kode

robota z razvojnim sistemom roboPIC n

Sintaksa 2:

asm (“ukaz”); //vnos posamicnega ukaza v zbirnidkem

jeziku
Primer uporabe:
fasm
nop //del programa
moviw Ox4a /1y
movwf portb [lzbirniSkem jeziku
fendasm

asm (“moviw 0x3e”);
asm (“movwf portc”);

//ukaz v zbirniskem jeziku
//ukaz v zbirniskem jeziku

Do prihodnje Stevilke

S teorijo smo danes zakljugili. Upam, da ni bilo preve¢ dolgo-
¢asno. Prihodnji¢ pa zopet nadaljujemo z zanimivejSimi stvar-
mi — pri¢eli bomo s krmiljenjem enosmernih motor&kov. Pripra-
vite se. Pa lep pozdrav! @

Literatura:

[1] HI-TECH, PICC Lite C Manual, HI-TECH Software, 2002,
http://www.htsoft.com/downloads/manuals.php;

[2] B.W. Kernighan, D.M. Ritchie, Programski jezik »Cx«, Ljublja-
na: Fakulteta za elektrotehniko, 1991.

Kmalu tudi v SLOVENSCINI!

BASCOM Solskiprirocnili vhrvaskemieziku

Zaloga je omejena!

Programiranje mikrokontrolera
programskim jezikom :

B/A/S/CIOM
&K

eﬁ’.ﬁx ELEXTROMIKA

ELEKTRONIKE

AX elektronika d.o.o, Pot heroja Trtnika 45, 1000 Ljubljana

narocanje
internet:
www.svet-el.si
telefon:
01/549 14 00

|, svet

OKTOBER 2005

