
S V E T E L E K T R O N I K E O K T O B E R 2 0 0 5

9P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

Izdelava mobilnega robota z razvojnim si-
stemom roboPIC (4)

Do sedaj smo se nauèili pri�igati led diodo, utripati z ledico ter uporabljati tipko. Opazili smo, da so prvi
èlanki o razvojnem sistemu roboPIC v vas spro�ili veliko zanimanje, saj ste se hitro odzvali. Da bi bilo na�e
sodelovanje èim bolj�e, bi ob tej prilo�nosti bralce povabil na spletne strani foruma (http://www.svet-el.si/
phpBB2/index.php), kjer lahko predstavite svoje uspehe pri delu, s skupnimi moèmi pa lahko re�imo mar-
sikatero nastalo te�avo.

Kaj bomo spoznali v tem prispevku? Posvetili bi se podrobno-
stim programskega jezika C, kajti premnogokrat se nam dogaja,
da nam pri realizaciji lastnih idej primanjkuje poznavanje orodij.
Spoznali bomo tipe spremenljivk ter njihovo rabo, vrste matema-
tiènih in logiènih operatorjev jezika C ter ukaze za nadzor toka
programa. Preprièani smo, da vam bo gradivo zelo koristilo.

Re�itve »domaèih nalog«
Sedaj pa k nalogam. Pogledali si bomo re�itve »domaèih nalog«,
re�itve nagradnih nalog pa prepustimo za prihodnjo �tevilko.
Naloga 1: Spremenite program tako, da bo led dioda na prikljuè-
ku RB3 svetila, ko bo tipka RA0 nepritisnjena. Ob pritisku nanjo
pa naj led dioda ugasne.

// INICIALIZACIJA
void main (void)
{
TRISA = 0B11111111; //PORTA = vhod, tudi prikljuèek RA0
ADCON1 = 0x07; //PORTA definiramo kot digitalna

vhodno-izhodna vrata
TRISB = 0B11110111; //**** prikljuèek RB3 definiramo kot

 izhod
TRISC = 0B11111111; //PORTC = vhod, ga ne uporabljamo
TRISD = 0B11111111; //PORTD = vhod, ga ne uporabljamo
TRISE = 0B00000111; //PORTE = vhod, ga ne uporabljamo

// GLAVNI PROGRAM
do

//uporabimo neskonèno do-while zanko
{
if (RA0 != 0) //**** ko tipka ni pritisnjena, je

 logièno stanje razlièno od 0
{
RB3 = 0; //èe je tipka nepritisnjena, led dioda

 sveti
}
else //**** ko je tipka pritisnjena, je

 logièno stanje enako 0
{
RB3 = 1; //èe je tipka pritisnjena, led dioda

 ugasne
}
}
while (1>0); //pogledamo �e enkrat, èe ni sedaj kaj

 drugaèe
}

Avtor: Silvan Bucik
E-po�ta: silvan.bucik@tscng.net

Naloga 2: Spremenite program tako, da bo ob pritisku tipke RA4
gorela led dioda na izhodu RB5. Ob spustu tipke pa naj zasveti
led dioda na izhodu RB3.

// INICIALIZACIJA
vois main (void)
{
TRISA = 0B11111111; //PORTA = vhod, tudi prikljuèek RA4
ADCON1 = 0x07; //PORTA definiramo kot digitalna

 vhodno-izhodna vrata
TRISB = 0B11010111; //**** prikljuèka RB3 in RB5 doloèimo

 kot izhoda
TRISC = 0B11111111; //PORTC = vhod, ga ne uporabljamo
TRISD = 0B11111111; //PORTD = vhod, ga ne uporabljamo
TRISE = 0B00000111; //PORTE = vhod, ga ne uporabljamo

// GLAVNI PROGRAM
while (1>0) //uporabimo neskonèno while zanko
{
if (RA4 == 0) //ko je tipka pritisnjena, je logièno

 stanje enako 0
{
RB5 = 0; //èe je tipka pritisnjena, led dioda

 na prikljuèku
RB3 = 1; //RB5 sveti, na prikljuèku RB3 pa ne
}
else //**** ko tipka ni pritisnjena, je

 logièno stanje enako 1
{
RB3 = 0; //èe tipka ni pritisnjena, led dioda

 na prikljuèku
RB5 = 1; //RB3 sveti, na prikljuèku RB5 pa ne
}
}
}

Naloga 3: Spremenite program tako, da bo led dioda utripala
hitreje (na primer 10 Hz), ali poèasneje (na primer 2 Hz).

// INICIALIZACIJA
int frq=frekvenca_kHz;
void main (void) //IME GLAVNE FUNKCIJE
{
TRISA = 0B11111111; //PORTA definiramo kot vhod
ADCON1 = 0x07; //PORTA definiramo kot digitalna
vhodno-izhodna vrata

O K T O B E R 2 0 0 5 S V E T E L E K T R O N I K E

10

TRISB = 0B11111110; //**** RB0 doloèimo kot izhod, vsi
 ostali prikljuèki so vhodi

TRISC = 0B11111111; //PORTC definiramo kot vhod
TRISD = 0B11111111; //PORTD definiramo kot vhod
TRISE = 0B00000111 //PORTE definiramo kot vhod

// GLAVNI PROGRAM
while (1>0)
{
RB0 = 0; //na izhodu RB0 se pojavi napetost 0V

 (logièna 0) � dioda se pri�ge
wait_mili(50); //**** poèakamo pol periode

//**** pri 10 Hz zna�a parameter 50,
//**** pri 2 Hz zna�a parameter 250

RB0 = 1; //na izhodu RB0 se pojavi napetost +5V
(logièna 1) � dioda ugasne

wait_mili(50); //**** poèakamo pol periode
//**** pri 10 Hz zna�a parameter 50,
//**** pri 2 Hz zna�a parameter 250

} // vse skupaj ponavljamo (while
zanka), da priène led dioda utripati

}

Naloga 4: Napi�ite program, da bodo utripale vse led diode na
vratih PORTB.

// INICIALIZACIJA
int frq=frekvenca_kHz;
void main (void) //IME GLAVNE FUNKCIJE
{
TRISA = 0B11111111; //PORTA definiramo kot vhod
ADCON1 = 0x07; //PORTA definiramo kot digitalna

 vhodno-izhodna vrata
TRISB = 0B00000000; //**** vse prikljuèke vrat PORTB

 doloèimo kot izhode
TRISC = 0B11111111; //PORTC definiramo kot vhod
TRISD = 0B11111111; //PORTD definiramo kot vhod
TRISE = 0B00000111 //PORTE definiramo kot vhod

// GLAVNI PROGRAM
while (1>0)
{
PORTB = 0B00000000; //**** pri�gemo vse led diode na

 vratih PORTB
wait_mili(100); //poèakamo pol periode
PORTB = 0B11111111; //**** ugasnemo vse led diode na

 vratih PORTB
wait_mili(100); //�e enkrat poèakamo pol periode
} //vse skupaj ponavljamo (while zanka),

 da priène led dioda utripati
}

Spremenljivke v programskem jeziku C
Osnovni podatkovni objekti, nad katerimi se izvajajo operacije,
so spremenljivke in konstante. Bistvena razlika med spremenljiv-
ko in konstanto je, kot �e njuni imeni povesta, da se vrednost
spremenljivke med tekom programa lahko ves èas spreminja, kon-
stanta pa v celotnem programu zavzema isto vrednost in je ni
mogoèe spreminjati.
V zaèetku pisanja programa je potrebno vse spremenljivke de-
klarirati. Konstante, ki v programu pogosto nastopajo, pa je smi-
selno nadomestiti s prireditvenimi imeni.

V programskem jeziku C loèimo �tiri tipe osnovnih spremenljivk.
To so:
� bitne spremenljivke (1-bitne spremenljivke),
� znaki (8-bitna �tevila),
� nepredznaèena cela �tevila (8-bitna, 16-bitna, 32-bitna �tevi-

la),
� predznaèena cela �tevila (8-bitna, 16-bitna, 32-bitna �tevila),
� �tevila s plavajoèo vejico (32-bitna, 64-bitna, 80-bitna �tevila).

Natanèen obseg posameznih tipov prikazuje sledeèa tabela:

Tabela 1: Tipi spremenljivk in njihov obseg

Deklaracija spremenljivk
Pred uporabo je potrebno vsako spremenljivko posebej deklari-
rati. S tem smo doloèili njen znaèaj in namen uporabe. Vèasih z
deklaracijo doloèimo tudi zaèetno vrednost spremenljivke, ki pa
se v toku izvajanja programa spreminja.

Primeri deklaracij spremenljivk:

char znak_0=�a�; //spremenljivka znak_0 dobi zaèetno
 vrednost a

int stevilo_0, stevilo_1=764;
//16-bitna spremenljivka stevilo_0
 nima zaèetne vrednosti, 16-bitna
 spremenljivka stevilo_1 ima zaèetno
 vrednost 764

char stevilo_2= 0B01010011, stevilo_3=0x3A;
char stevilo_4 @0x50; //16-bitna spremenljivka stevilo_4 ima

doloèen statièni naslov (fiksni) 0x50

Vse spremenljivke razen stevilo_0 imajo z deklaracijo doloèene
tudi zaèetne vrednosti. Opazimo, da so spremenljivke znak_0,
stevilo_2, stevilo_3 in stevilo_4 tipa char, èeprav je le znak_0
zares znakovnega tipa. Prevajalnik namreè ne loèi posebnih raz-
lik med spremenljivko znakovnega tipa in 8-bitno spremenljivko.
Prevajalnik bo vsem spremenljivkam spominske lokacije dodelil
samodejno (poiskal bo prvo prosto mesto). Le spremenljivka ste-
vilo_4 ima statièno spominsko lokacijo (0x50); naslov spremen-
ljivke smo sami doloèili.

Zapisovanje konstant
V programskem jeziku C loèimo veè naèinov zapisovanja �tevil in
znakov:

P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

S V E T E L E K T R O N I K E O K T O B E R 2 0 0 5

11

764
deseti�ki zapis �tevila (�tevilo se ne sme zaèeti z 0),

0b01010011
dvoji�ki zapis �tevila (�tevilo se priène z znakoma 0b),

0x34
�estnajsti�ki zapis �tevila (�tevilo se priène z znakoma 0x),

0256
osmi�ki zapis �tevila (�tevilo se priène s èrko 0),

1.8e-3
zapis �tevila s plavajoèo vejico,

�a�
zapis konstante znakovnega tipa.

Polja
Veè spremenljivk, ki ustrezajo skupnemu opisu, lahko zdru�imo v
skupino spremenljivk, ki jo imenujemo polje. Vsaka spremenljiv-
ka v polju zavzema svoje mesto in jo tako tudi obravnavamo. Pri
uporabi spremenljivk v polju moramo nujno poleg imena spre-
menljivke navesti tudi pripadajoèi indeks.

Primer deklaracije polja:
char senzor[3]; //polje s tremi elementi, elementi so

 8-bitna �tevila
char senzor[3]= {0b11100010, 0b11001100, 0b11011100};

//polje s tremi elementi z definirani
 mi zaèetnimi vrednostmi, elementi so
 8-bitna �tevila

Gornja zapisa se razlikujeta v tem, da v drugem primeru istoèa-
sno z deklariranjem polja doloèamo tudi zaèetne vrednosti ele-
mentov, medtem ko v prvem primeru zaèetne vrednosti elemen-
tov niso doloèene. Zapis prikazuje primer polja senzor, ki vsebu-
je podatke o stanjih senzorjev preteklih treh merjenj. S klicanjem
polja senzor imamo dostop do kateregakoli podatka zadnjih treh
merjenj.

Primer uporabe:
senzor[2] = senzor[1]; //stare meritve se shranijo na vi�jo

 lokacijo ter pripravimo
senzor[1] = senzor[0]; //na lokaciji senzor[0] prostor za

 novo meritev
senzor[0] = PORTA; // stanje na senzorjih, ki so priklju

 èeni na vrata PORTA, se prenese v
 polje senzor na lokacijo 0; to so
 sve�i podatki

Strukture
Strukture so v osnovi zelo podobne poljem, vendar jih za razliko
od slednjih lahko sestavljajo elementi razliènih tipov. Elementi
struktur so samostojni elementi, razliènih tipov in dol�in in sku-
paj tvorijo celoto.

Primer deklaracije strukture:
struct{
unsigned STOP:1; //v strukturi control definiramo

 spremenljivko STOP, ki zavzema 1 bit
unsigned NAPREJ:1; //v strukturi control definiramo

 spremenljivko NAPREJ,ki zavzema 1 bit
unsigned LEVO:1; //v strukturi control definiramo

 spremenljivko LEVO, ki zavzema 1 bit
unsigned DESNO:1; //v strukturi control definiramo

 spremenljivko DESNO,ki zavzema 1 bit
unsigned PODATEK:4; //v strukturi control definiramo

 spremenljivko PODATEK,ki zavzema 4 bite
}control; //na koncu napi�emo ime strukture

Primer uporabe:
if (control.STOP==1) //èe je v registru control postavljen

 bit stop,
PORTC&= 0b11000110; //potem naj se motorja ustavita

 prikljuèena sta preko vrat PORTC)

Kazalci
Kazalec je spremenljivka, ki vsebuje naslov neke druge spremen-
ljivke. S kazalcem, katerega vsebina je naslov spremenljivke, iz-
vajamo operacije nad spremenljivkami na posredni naèin. V pre-
nekaterih primerih je uporaba kazalcev nepogre�ljivo orodje. Ven-
dar je za zaèetnika tovrstni naèin programiranja kar hud zalogaj,
zato se bomo v zaèetnih korakih kazalcem izognili.

Primer deklaracije kazalca:
char *kazalec; //kazalec na 8-bitno �tevilo (kazalec

 prepoznamo po prefiksu *)

Pred praktiènim primerom bi omenili �e dva znaka, ki spremljata
delo s kazalci:

* prefiks pomeni vrednost spremenljivke na naslovu, na katere-
ga ka�e kazalec,

& prefiks pomeni naslov spremenljivke, na katerega ka�e kaza-
lec.

Primer uporabe kazalcev pri prepisu vsebine vrat PORTB
na PORTC:
kazalec = &PORTB; //v kazalec se shrani naslov vrat

 PORTB (0x0006)
temp = *kazalec; //v temp se shrani vrednost spremen

 ljivke, katere naslov (0x0006,
 naslov vrat PORTB) hrani kazalec

kazalec = kazalec+1; //vrednost kazalca se poveèa za 1
 (sedaj zna�a 0x0007)

*kazalec= temp; //na naslov, kamor ka�e kazalec
 (0x0007, naslov vrat PORTC), se
 prepi�e vrednost iz spremenljivke
 temp

Operatorji v programskem jeziku C
Poglejmo si, katere operacije uporabljamo pri programiranju s
programskim jezikom C.

Ostali operatorji

P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

O K T O B E R 2 0 0 5 S V E T E L E K T R O N I K E

12

PICDEM.net Lite demo plo�èa je pravzaprav Internet/Ethernet raz-
vojna plo�èa z vgrajenim PIC18F452 mikrokontrolerjem in tovarni-
�ko vgrajenim TCP/IP skladom. Plo�èa podpira vsa 40-pinska DIP
vezja s standardnim razporedom pinov, kakr�nega imata PIC16F877
ali PIC18F452.
PICDEM.net plo-
�èa je namenjena
eksperimentiranju
z razliènimi Micro-
chipovimi TCP/IP
re�itvami. Upora-
bniku je po inicial-
ni nastavitvi IP na-
slova omogoèen
takoj�nji dostop
omre�ju. Flash mi-
krokontroler omo-
goèa modifikacije
v demo programu
oziroma dodajanje
aplikacijskega pro-
grama.
Na demo plo�èi se
nahaja tudi stabili-
ziranih 5 V za napa-
janje dodatnih sen-
zorjev ali testnih
uporabni�kih vezij.
Z namenom razvo-
ja lastne aplikacije
lahko v èip nalo�i-
mo tudi druge standardne ali uporabni�ke stre�ni�ke programe.
Na plo�èi je uporabljen brezplaèen Microchipov TCP/IP sklad, ki je
opisan v referenèni aplikaciji AN833 (DS00833). V omenjenem do-
kumentu so na voljo tudi primeri kode.
Microchip TCP/IP sklad je garnitura programov, ki omogoèa upora-
bo tako standardnih TCP/IP aplikacij (HTTP Server, Mail Client,
itn.), kot tudi uporabni�kih TCP/IP aplikacij. Da bi lahko uporabili
TCP/IP sklad, se uporabnikom ni potrebno uèiti vseh njegovih za-
pletenih specifikacij in svoj trud lahko osredotoèijo le na HTTP stre�-
ni�ko aplikacijo, ki pa ne zahteva poznavanje TCP/IP protokola.
TCP/IP sklad je implemetiran na modularen naèin, z vsemi svojimi
zmo�nostmi kreiranja visoko abstraktnih plasti, ki jim lahko dostopa-
mo iz katerekoli plasti neposredno pod njimi. Sklad je napisan v
programskem jeziku C, namenjen je Microchipovim prevajalnikom

Sodelujte v nagradnem �rebanju
Microchipove PICDEM.net� Lite
Internet/Ethernet demo plo�èe

www.microchip-comp.com/se-picdem

Svet elektronike svojim bralcem nudi mo�nost osvojitve Microchip PICDEM.net Lite demo plo�èe in MPLAB
ICD 2 razhro�èevalnika.

C18 in HI-TECH PICC 18 in je predviden le za delovanje v Micro-
chipovi PIC 18 dru�ini mikrokontrolerjev.
Èeprav je ta implementacija namenjena le za delovanje na PIC-
DEM.net Internet/Ethernet demo plo�èi, jo lahko enostavno prila-

godimo tudi za de-
lovanje v katerikoli
napravi, ki je
opremljena s
PIC18 mikrokon-
trolerjem. PIC-
DEM.net vsebuje
Ethernet in RS-
232 komunikacij-
ski vmesnik.
HTML spletne
strani, ki jih gene-
rira PICmicro®
mikrokontroler, si
lahko ogledujemo
s katerimkoli stan-
dardnim spletnim
brskalnikom (npr.
M i c r o s o f t ®
Explorer). Zaèetna
konfiguracija plo-
�èe (nastavitev IP
naslova) se izvaja
preko RS-232 vrat
s pomoèjo stan-
dardnega termi-
nalskega progra-

ma. Demo plo�èa je opremljena tudi s 6-pinskim modularnim konek-
torjem za direktno povezavo z MPLAB® ICD 2 razhro�èevalnikom.
S pomoèjo MPLAB® ICD 2 lahko uporabniki spreminjajo oz. pre-
programirajo flash PICmicro mikrokontroler in tako prilagajajo delo-
vanje sistema svojim potrebam. Na plo�èi je tudi veliko prostora za
dodajanje raznih dodatnih komponent potrebnih za izvedbo lastnih
aplikacij. Povr�ina zadostuje za namestitev vgradnega modema, ki
bo zagotavljal klicno zmogljivost. Na voljo je tudi veè statusnih indi-
katorjev in uporabni�kih vmesnikov, vkljuèno s 16 x 2 LCD prikazo-
valnikom in LEDikami.

Da bi sodelovali v nagradnem �rebanju tega raz-
vojnega kita, je dovolj, da se prijavite na www.mic-
rochip-comp.com/se-picdem.

S V E T E L E K T R O N I K E O K T O B E R 2 0 0 5

13

Kontrola poteka programa
Stavki za kontrolo toka programa v programskem jeziku doloèajo
vrstni red izvajanja programa. V programskem jeziku C loèimo
dve vrsti stavkov:

Logièni operatorji:

Relacijski operatorji:

Aritmetièni operatorji:

� logiène odloèitve in
� programske zanke.

Logiène odloèitve
K logiènim odloèitvam �tejemo tiste stavke, ki poskrbijo za vejitev
programa. V to skupino spadajo:

� stavek if-else,
� stavek switch-case in
� programski skok goto.

Stavek if-else ter programski skok goto sta bila opisana �e v pre-
tekli �tevilki, zato ju ne bi ponovno opisovali.

Stavek switch-case
Poglejmo si uporabo switch-case stavka. Stavek switch-case upo-
rabljamo v primerih, ko se program lahko nadaljuje po veè razliè-
nih poteh. Na nek naèin je stavek switch-case nadgradnja stavka
if-else, pri slednjem se program lahko nadaljuje le po dveh razliè-
nih poteh. Pot, po kateri se bo program nadaljeval, je odvisen od
izpolnjevanja pogojev (case).

Sintaksa:
switch(a)
{
case 0: akcija_0; //èe je a enak 0, se izvede del

 programa akcija_0
break; //izhod iz zanke
case 1: akcija_1; //èe je a enak 1, se izvede del

 programa akcija_1
break; //izhod iz zanke
case 2: akcija_2; //èe je a enak 2, se izvede del

 programa akcija_2
break; //izhod iz zanke
default: akcija_drugo; //v ostalih primerih se izvede del

 programa akcija_drugo
break; //izhod iz zanke
}

Primer uporabe:
switch (senzor_stat) // testiranje pogojev
{
case 0B00000000:
mot2a=1; // del programa, ki se izvede v

P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

O K T O B E R 2 0 0 5 S V E T E L E K T R O N I K E

14

primeru,
mot2b=0; // ko je vrednost
mot1a=0; // spremenljivke senzor_stat
mot1b=1; // enaka 0b00000000
break;

case 0B00000001:
mot2a=1; // del programa, ki se izvede v
primeru,
mot2b=0; // ko je vrednost
mot1a=1; // spremenljivke senzor_stat
mot1b=0; // enaka 0b00000001
break;

case 0B00000100:
mot2a=0; // del programa, ki se izvede v
primeru,
mot2b=1; // ko je vrednost
mot1a=1; // spremenljivke senzor_stat
mot1b=0; // enaka 0b00000100
break;

default:
mot2a=1; // del programa,
mot2b=0; // ki se izvede
mot1a=0; // v ostalih
mot1b=1; // primerih
break;
}

Programske zanke
Programske zanke so deli programa, ki se veèkrat ponovijo. �te-
vilo ponovitev je odvisno od izpolnjevanja pogojev, ki se pred vsako
ponovitvijo zanke preverjajo. V to dru�ino stavkov spadajo:
� programska zanka while,
� programska zanka do-while,
� programska zanka for ter
� stavka break in continue.

Zanki while ter do-while sta nam �e znani iz pretekle �tevilke, ogle-
dali si bomo �e preostali dve.

Programska zanka for
Programska zanka for je nadgradnja zanke while. Za razliko od
zanke while, ki je od parametrov potrebovala le pogoj testiranja,
potrebuje zanka for tri zaèetne parametre, ki so med seboj loèe-
ni s podpièji, in sicer:
� zaèetno vrednost,
� pogoj testiranja in
� korak zanke (reinicializacija).

Sintaksa:
for (zaèetna_vrednost, pogoj_testiranja, korak_zanke)
{
akcija_1;
}

Pred prièetkom izvajanja zanke se nastavijo zaèetne vrednosti
spremenljivk, nato se izvede zanka. Ob zakljuèku zanke se izve-
de �e operacija korak zanke. Zanka se izvaja tako dolgo, dokler
je pogoj izpolnjen. Preverjanje se vr�i vedno v zaèetku zanke,

�ele nato se izvede akcija_1.

Primer uporabe:
for (st_ponovitev=0;st_ponovitev<3;st_ponovitev=st_ponovi-
tev+1) //zaèetna vrednost spremenljivke

//st_ponovitev je enaka 0
{ //tu se izvede preverjanje, èe je
st_ponovitev<3
servo2_out(51); //izvaja

//se
wait_sec(5); //sledeèi
servo2_out(77); //del

//programa
wait_sec(5); //vse
servo2_out(102); //do

//tukaj
wait_sec(5); //oziroma do tukaj
} //ob zakljuèku zanke se spremenljivka

//st_ponovitev poveèa za 1

Z uporabo programske zanke while bi isti program izgledal tako-
le:
st_ponovitev=0; //pred prièetkom izvajanja zanke

//nastavimo zaèetno vrednost
while(st_ponovitev<3) //testiranje pogojev
{
servo2_out(51);

wait_sec(5);
servo2_out(77);
wait_sec(5);
servo2_out(102);
wait_sec(5);

st_ponovitev=st_ponovitev+1
//korak zanke

}

Stavka break in continue
Stavka break in continue uporabljamo za prekinitev ali nadaljeva-
nje programske zanke. S stavkom break prekinemo izvajanje ka-
terekoli zanke, kljub temu, da so pogoji izvajanja zanke izpolnje-
ni. S stavkom continue pa dose�emo ravno nasprotno: program-
ska zanka se bo vedno ponovila, ne glede na to, ali so pogoji
izvajanja zanke izpolnjeni ali ne.

Sintaksi:
break; // prekine izvajanje zanke
continue; // nadaljuje izvajanje zanke

Primer uporabe:
for (stevec=0;stevec<5;stevec++)
{
if(stevec==2)
{
continue; //v primeru, da je spremenljivka

 stevec enaka 2
//(èetudi je vrednost spremenljivke
 stevec manj�a kot 5),
//se izvajanje zanke ustavi in

}
//vrne na zaèetek for zanke

PORTB<<=1;

P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

S V E T E L E K T R O N I K E O K T O B E R 2 0 0 5

15

if(stevec==4)
{
break; //kljub temu, da je pogoj izpolnjen
}

//(vrednost stevec manj�a kot 5),
}

//se izvajanje zanke predèasno prekine
//in nadaljuje izven for zanke

Zbirni�ki ukazi
Pa �e to. Vèasih se pojavi zahteva, da moramo del programa na-
pisati v zbirnem jeziku. To je ni�ji programski jezik, ki ga uporab-
ljamo pri programiranju mikrokontrolerjev. Po naravi je primitiv-
nej�i, to pomeni, da je potrebno opravila, ki jih v vi�jih program-
skih jezikih zapi�emo v eni vrstici (primer matematiène operacije
mno�enja), v zbirniku zapi�ejo v veè korakih. Prednost zbirnika
pred vi�jimi programskimi jeziki je predvsem v kraj�i programski
kodi in posledièno hitrej�em izvajanju programa.

Sintaksa 1:
#asm //oznaèuje prièetek zbirni�ke kode
programska koda
#endasm //oznaèuje konec zbirni�ke kode

P R O J E K T I / I z d e l a v a m o b i l n e g a r o b o t a z r a z v o j n i m s i s t e m o m r o b o P I C

Sintaksa 2:
asm (�ukaz�); //vnos posamiènega ukaza v zbirni�kem

 jeziku

Primer uporabe:
#asm
nop //del programa
movlw 0x4a //v
movwf portb //zbirni�kem jeziku
#endasm
asm (�movlw 0x3e�); //ukaz v zbirni�kem jeziku
asm (�movwf portc�); //ukaz v zbirni�kem jeziku

Do prihodnje �tevilke
S teorijo smo danes zakljuèili. Upam, da ni bilo preveè dolgo-
èasno. Prihodnjiè pa zopet nadaljujemo z zanimivej�imi stvar-
mi � prièeli bomo s krmiljenjem enosmernih motorèkov. Pripra-
vite se. Pa lep pozdrav! l

Literatura:
[1] HI-TECH, PICC Lite C Manual, HI-TECH Software, 2002,

http://www.htsoft.com/downloads/manuals.php;
[2] B.W. Kernighan, D.M. Ritchie, Programski jezik »C«, Ljublja-

na: Fakulteta za elektrotehniko, 1991.

Kmalu tudi v SLOVEN�ÈINI!

